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We use the truncated Wigner approximation to derive stochastic classical field equations for the description
of polariton condensates. Our equations are shown to reduce to the Boltzmann equation in the limit of low
polariton density. Monte Carlo simulations are performed to analyze the momentum distribution and the first-
and second-order coherences when the particle density is varied across the condensation threshold.
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I. INTRODUCTION

Condensates of microcavity polaritons1 are a solid-state
realization of the two-dimensional Bose gas. Their successful
creation relies on the peculiar nature of the microcavity po-
lariton quasiparticle that combines a very light effective mass
�high quantum degeneracy temperature� with interparticle in-
teractions that provide efficient relaxation. The formation of
spontaneous coherence in these systems is now routinely
achieved in several laboratories.2–5

One crucial difference between polariton condensates and
other realizations of the two-dimensional Bose gas such as
liquid 4He films6 and tightly confined ultracold atomic gases7

comes from the finite lifetime of the microcavity polaritons
of the order of a few ps. In order to compensate for the
polariton losses, new particles can be continuously injected
into the microcavity. The resulting steady state is not a ther-
mal equilibrium one; still it shows features expected for an
equilibrium BEC. For example, the tail of the momentum
distribution can in many cases be fitted by an exponential
Maxwell-Boltzmann decay. The lack of full thermalization is
already clear from the fact that the extracted temperature is
in general not equal to the temperature of the reservoir con-
stituted by the semiconductor lattice.2–4

Effects that have no counterpart at equilibrium have been
observed in polariton condensates. For example, the conden-
sate state can depend dramatically on the size of the excita-
tion spot:8,9 in the case of a large pump spot the usual con-
densation around zero momentum is observed, instead for a
small excitation spot the condensation occurs on a ring in
momentum space. This difference has been explained within
a mean-field theory based on the Gross-Pitaevskii equation,
including driving and dissipation.10 More recently, another
remarkable phenomenon related to the flow in a continuously
pumped polariton condensate was observed
experimentally:11 vortices are spontaneously created in polar-
iton condensates without setting the system into rotation. A
theoretical interpretation of this effect was given in the
framework of the generalized Gross-Pitaevskii equation. In a
significant fraction of random landscape realizations the po-
lariton condensate contains a vortex. A related prediction was
made by Keeling and Berloff:12 they found that a rotating
vortex lattice can be spontaneously generated in a large regu-
lar trap.

The above-mentioned phenomena can be understood
within a mean-field theory, i.e., a theory where the quantum

polariton field is replaced by a classical field. In this approxi-
mation, all information on the fluctuations is however lost.
Since we deal with a two-dimensional system, the physics of
fluctuations in polariton condensates is in analogy with equi-
librium systems expected to be very rich7,13,14 and the ques-
tion arises, for example, to what extent the physics related to
the Berezinskii-Kosterlitz-Thouless survives the driving and
dissipation of polariton condensates.

Experimentally, the fluctuations of the polariton conden-
sates have been investigated under the form of the first- and
second-order coherence functions. In the first-order equal
time spatial correlation function, long-range correlations
were observed above the stimulation threshold for
condensation.3,15 Other correlation functions include the tem-
poral first-5 and second-order coherences.5,16,17

The semiclassical Boltzmann equation18–20 provides a the-
oretical description of the first-order spatial coherence, which
is the Fourier transform of the momentum distribution. In-
cluding the details of the relaxation mechanisms, this formal-
ism is expected to give a reliable estimate for the required
polariton density to achieve condensation. A Boltzmann de-
scription that takes the polarization degree of freedom into
account can be found in Ref. 21. Above the condensation
threshold, the random phase approximation contained in the
Boltzmann equation breaks down and more sophisticated
techniques should be used. Schemes that have been imple-
mented in the literature involve the separation of the conden-
sate mode from the excited states22 and a generalization of
the Boltzmann equation that includes the coherences within a
Bogoliubov approximation.23

One of the remarkable consequences of the nonequilib-
rium nature of the polariton condensates is that the collective
excitation spectrum is changed at low wave vectors: a diffu-
sive instead of soundlike character is found for the low-
energy phase modes. This dispersion of elementary excita-
tions was found in a theoretical description based on a
Keldysh Green’s-function technique worked out by Little-
wood et al.24 The same spectrum is straightforwardly recov-
ered by linearizing the generalized Gross-Pitaevskii equation
around a steady state,25 a calculation that is easily extended
to spatially nonuniform situations.

It is well known from quantum optics and the theory of
weakly interacting Bose gases that fluctuations can be in-
cluded by introducing a stochastic element in the Gross-
Pitaevskii equation.26–31 For polariton systems in the para-
metric oscillation regime, such a method was used in Ref.
32. One of the great advantages of these so called classical
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field methods is that the nonuniformity of a system does not
introduce any appreciable extra cost in their numerical
implementation. A second advantage is that practical numeri-
cal calculations do not require a perturbative expansion
around a condensed state and can even be applied to study
physics related to the condensation phase transition.33,34 Fi-
nally, these methods can describe the evolution of the system
in real time so that information on both the steady state and
transients can be obtained. The latter can be of particular use
to model experiments that are performed under pulsed
excitation.2

Due to the approximations involved in the classical field
methods, they cannot describe the particles up to arbitrary
large momenta, where quantum effects �most notably spon-
taneous scattering� are dominant.26 In this respect, polariton
condensates are very well suited for a classical field descrip-
tion because, as illustrated in Fig. 1, the phase space can be
naturally divided into two parts: �i� a low-energy polaritonic
region with a small effective mass of about 10−4 times the
bare electron mass that allows to reach quantum degeneracy
at densities of 108 cm−2 at a temperature of 10 K, 8 orders of
magnitude larger than the degeneracy temperature of ultra-
cold atoms at comparable densities, and �ii� a high-energy
excitonic “reservoir” region with a high effective mass that
under typical experimental densities behaves as an incoher-
ent classical gas. The role of the two subsystems is very
different: the polaritonic field is the quantity of experimental
interest because it is easily accessible in photoluminescence
experiments and can be driven into the quantum degenerate
regime. The role of the reservoir is to replenish the polariton
region through relaxation.

We will present in this paper a set of classical field equa-
tions for the �Wigner distribution function of the� polariton
dynamics coupled to the exciton reservoir and apply them to
calculate the equal time first- and second-order coherence
functions across the condensation threshold. For simplicity,
we have not included the polarization degree of freedom. At
thermal equilibrium, the magnitude of fluctuations can be
parametrized by a single quantity, the temperature. For a

weakly interacting system, this temperature can be extracted
by fitting the tail of the momentum distribution with a Max-
wellian curve. Experiments have shown that the Maxwell-
Boltzmann distribution is also recovered for the tail of the
out of equilibrium polariton distribution2–4 and has even
been experimentally observed in the case of weak coupling
lasing.35 We will show that out of equilibrium, the universal
characterization of fluctuations by a temperature parameter
breaks down. We will point out several crucial aspects of the
condensate-reservoir interactions that affect the correlation
functions without changing the tail of the momentum distri-
bution.

We start by presenting the model Hamiltonian for the non-
resonantly excited polariton system in Sec. II. It is shown in
Sec. III how a master equation for the lower polariton �LP�
field can be derived and how to solve it within the truncated
Wigner approximation in Sec. IV. The reservoir dynamics is
discussed in Sec. V. In Sec. VI, we discuss the relation be-
tween our model and the Boltzmann equation. Numerical
Monte Carlo results are presented in Sec. VII. Conclusions
are drawn in Sec. VIII.

II. HAMILTONIAN

In order to treat the two regions of polaritonic phase space
with a very different character, we replace the original
Hamiltonian by a Hamiltonian for polaritons and excitons
that are annihilated by the operators ��x� and ��x�, respec-
tively. In terms of these annihilation operators, our model
Hamiltonian reads as

H =� dx�HLP�x� + HR�x� + HR,LP�x�� . �1�

The lower polariton Hamiltonian density is the usual

HLP�x� = �†�x��LP�− i����x� +
g

2
�†�x��†�x���x���x� ,

�2�

where g quantifies the strength of the polariton-polariton in-
teractions, that is well approximated by a zero-range poten-
tial. The exciton reservoir Hamiltonian is given by

HR�x� = �†�x��X�− i����x� +
g

2
�†�x��†�x���x���x� .

�3�

Both the lower polariton and exciton dispersions are approxi-
mated by parabolic functions close to their minimum
�LP,X�k�=�LP,X+k2 /2mLP,X. In the polariton/exciton basis, the
exciton-exciton Coulomb scattering gives rise to various
coupling terms. The relevant ones are

HR,LP�x� = HR,LP
loss �x� + HR,LP

gain �x� + HR,LP
mf �x� . �4�

Lower polaritons are created by the term

HR,LP
gain �x� = g�†�x���x���x��†�x� , �5�

whereas they are destroyed by

−200 −100 0 100 200

−10

−5

0

5

10

15

20

Exciton Reservoir

Lower polariton

k (µm−1)

ε−
ε x

(m
eV

)

FIG. 1. �Color online� Sketch of the separation of phase space in
two regions: the lower polariton and the exciton reservoir. Scatter-
ing from the exciton reservoir into the lower polariton region re-
plenishes the lower polaritons.
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HR,LP
loss �x� = g�†�x��†�x���x���x� . �6�

Mean-field shifts of the lower polaritons due to the excitons
in the reservoir and vice versa are described by the Hamil-
tonian

HR,LP
mf �x� = g�†�x���x��†�x���x� . �7�

Note that we have in fact extended phase space by introduc-
ing two particles: the excitonic phase space is extended down
to k=0 and the polaritonic phase space to arbitrarily large
momenta. Both extensions however add a very few states in
the physically relevant regions.

III. MASTER EQUATION

In order to take advantage of the incoherent nature of the
excitons in the reservoir, we will trace them out from the
dynamics and obtain a quantum equation for the LP field
alone. The LP field dynamics can be studied through the
Liouville equation for the density matrix

�̇ = − i�H,�� . �8�

Going through the usual steps in the derivation of the master
equation in quantum optics, the master equation for the full
density matrix reads in the second Born approximation in
HR,LP

��t� = ��t0� − i�
t0

t

dt��HR,LP�t��,�LP�t���

− �
t0

t

dt��
t0

t�
dt��HR,LP�t��,�HR,LP�t��,��t���� , �9�

where HR,LP�t� is in the interaction picture with respect to the
Hamiltonian H0=HLP+HR.

Taking the trace of this equation over the reservoir de-
grees of freedom gives the desired master equation for the
reduced density matrix �LP of the lower polariton subsystem.
The second term on the right-hand side vanishes when the
trace over the reservoir is taken, so we only have to analyze
the third one. It consists of terms such as

TrR�HR,LP
gain/lossHR,LP

gain/loss�� , �10�

where

TrR�HR,LP
gain HR,LP

gain �LP� = TrR�HR,LP
loss HR,LP

loss �LP� = 0. �11�

A nonzero term is, e.g., given by

R1 =� dt� dt�TrR�HR,LP
gain �t��HR,LP

loss �t����t��� . �12�

In order to work out the trace over the reservoir, we intro-
duce relative and center of mass coordinates

X =
x� + x�

2
, x = x� − x�, �13�

T =
t� + t�

2
, t = t� − t�. �14�

As in Ref. 30, we define the Wigner transform of the reser-
voir propagator as

FW�X,k,T,�� =� dt dx ei�te−ikxTrR��†�X + x/2,T

+ t/2���X − x/2,T − t/2��� . �15�

With the inverse transformation, we obtain for R1 defined in
Eq. �12�

R1 =
1

�3 �
k1,2,3

� dXdx ei��k·x−��t�	 f�X,k1,2,3��†�X + x/2,T

+ t/2���X − x/2,T − t/2���T − t/2� , �16�

where � is the area of our system, �k=k2+k3−k1,
��=�X�k2�+�X�k3�−�X�k1�, and 	 f�X ,k1,2,3� is a typical
Boltzmann collision rate �density in phase space�,

	 f�X,k1,2,3� = f�X,k1,T��f�X,k2,T� + 1��f�X,k3,T� + 1� .

�17�

We have used the quasiparticle approximation36

FW�X,k,T,�� = �2
i���� − �X�k��f�X,k,T� . �18�

The time evolution of the LP field operators is approximately
given by

�†�X + x/2,T + t/2� 	
1

�
�
Q

eiQ�X+x/2�ei�LP�Q�t�†�Q,T − t/2� ,

�19�

where the interaction shift in the frequency of �Q was ne-
glected. The exponential eiQx can be combined with the ex-
ponential in Eq. �16�. Because the typical reservoir momen-
tum is much larger than the typical lower polariton
momentum �see Fig. 1�, this factor is negligible. For the
same reason, also the x in the second field operator in Eq.
�16� can be neglected. If we then also assume that the density
matrix is slowly varying on the microscopic time scale t, the
integral over the relative time imposes energy conservation
for the scattering process. We can then finally rewrite Eq.
�12� as

R1��LP�q�� = 
g2T� dX
1

�3 �
k1,k2,k3,Q

��k���+�LP�q�	 f�X,k1,2,3�

��Q
† �T��X�T���T� . �20�

The main simplifying assumption of the model consists
now of assuming that expression �20� is a function of the
total reservoir density nR and the energy �LP�q� only. This
comes down to the assumption of a steady-state distribution
of the reservoir excitons among the different k states.

Working out the trace over the reservoir in Eq. �9� yields
gain and loss terms for the lower polariton field from the
collisions involving reservoir excitons. Collecting all terms,
we obtain
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d

dt
�LP�t� = − i�HLP,�LP� + Kin��LP� + Kout��LP� , �21�

where the density matrix evolves under the inscattering as

Kin��� =
1

2�
q
� dxRin�nR,�LP�q��

��eiqx�†�x����q� − eiqx��q��†�x�� + H.c.� ,

�22�

and under outscattering as

Kout��� =
1

2�
q
� dxRout�nR,�LP�q���eiqx��q���†�x�

− eiqx�†�x���q�� + H.c.� . �23�

The rates Rin/out are given by the usual semiclassical Boltz-
mann rates. Neglecting stimulated processes in the reservoir,
Rin and Rout depend on the reservoir density, respectively, as
nR

2 and nR. We therefore write

Rin�nR,�LP�q�� = nR
2Rin��LP�q�� , �24�

Rout�nR,�LP�q�� = nRRout��LP�q�� . �25�

Actually, another loss mechanism for the lower polariton
field is present: leakage of the photon out of the imperfect
microcavity mirrors that gives a finite linewidth 
 to the
lower polariton. This loss mechanism has a negligible energy
and momentum dependence and can be added to the model
by simply adding the constant term 
 to Rout.

IV. WIGNER

An exact solution of the master equation �21� is not pos-
sible, but numerical progress can be made by the use of
quasiprobability distributions from quantum optics. In the
presence of dissipation, the Wigner distribution function is
believed to give robust results �see Ref. 37, pp. 115 and 124�.
This method has been applied to study Bose-Einstein Con-
densation �BEC� aspects of parametrically generated signal
polariton in microcavities in Ref. 32.

The Wigner distribution function is a quasiprobability dis-
tribution defined on the space spanned by the complex val-
ued functions ��x�. In order to avoid ambiguity, we will use
below an explicit “hat” notation for the quantum field opera-

tor �̂�x�.
In terms of the density matrix, the Wigner distribution

function is defined as

PW���x�� =
1


2� d2��x�exp���x���x�� − ��x����x��

�
1



� d2��x�
��x���

�exp���x��̂†�x� − ���x��̂�x����x��� , �26�

where ���x�� is a coherent state of polaritons at position x
with complex amplitude ��x�. Expectation values calculated

with the Wigner distribution function correspond to expecta-
tion values of symmetrized operator expressions. For ex-
ample for the one-body density matrix, we have

� d2��x�PW���x�����x���x��

=
1

2
Tr����̂†�x��̂�x��� + �̂�x���̂†�x�� . �27�

The operation of the creation and annihilation fields on the
density matrix can be translated into the following functional
operations on the Wigner distribution:37

�̂�x�� → 
��x� +
1

2

�

��x�
�PW���x�,���x�� ,

��̂�x� → 
��x� −
1

2

�

��x�
�PW���x�,���x�� ,

�̂†�x�� → 
��x� −
1

2

�

��x�
�PW���x�,���x�� ,

��̂†�x� → 
��x� +
1

2

�

��x�
�PW���x�,���x� . �

With these operator correspondences, the equation of motion
for the Wigner quasiprobability distribution PW is obtained
from the master equation �21�:

�PW���x�,���x��
�t

= � �

���x�
Fdet −

�

����x�
Fdet

�

+
�2

���x����x�
�
 + Rin + Rout� + i

g

2�V

�2

���x����x�

�� �

����x�
���x� −

�

���x�
��x���PW���x�,���x�� ,

�28�

where Fdet is the deterministic mean-field force acting on the
polaritons,

Fdet = − i��LP�− i�� +
i�Rin − Rout − 
�

2
+

g

�V
���x��2���x� .

�29�

In Eq. �28�, a momentum cutoff for the field � is implicitly
introduced by formulating the problem on a spatial grid with
cell area �V. The expression Rin,out� should be understood
as

Rin��x� = nR
2�x��

q,x�

eiq�x−x��Rin��LP�q����x�� , �30�
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Rout��x� = nR�x��
q

eiq�x−x��Rout��LP�q����x�� . �31�

From the mathematical point of view, the last term in the
equation of motion �Eq. �28�� has proved to make it very
hard to find numerical approximations to the solutions of Eq.
�28�. If this term is neglected �the so-called truncated Wigner
approximation�, the quasiprobability distribution PW obeys a
standard Fokker-Planck equation that corresponds to the
Langevin equation,

d��x� = Fdet���x�,���x�� + dW�x� , �32�

where dW is a complex Gaussian stochastic variable with the
correlation functions:


dW�x�dW�x��� = 0,


dW�x�dW��x��� =
dt

2�V
�
x�Rin

S + Rout
S �x�� + 
�x,x�� ,

�33�

where Rin,out
S = �Rin,out+ �Rin,out�T� /2 are the symmetrized

kernels. Solutions to the Langevin equation can be obtained
by standard stochastic numerical techniques.

Let us now estimate the order of magnitude of the third-
order derivative in Eq. �28� with respect to the other terms, in
particular the second-order derivative terms. The function
PW is peaked around the value of the field ��x� whose
squared modulus equals ���x��2=N�x�+1 /2. The variation in
PW occurs on a scale of its argument of order one. Deriva-
tives are therefore expected to be of the order of the function
PW itself and the prefactors determine the relative impor-
tance of the derivative terms in Eq. �4�. This leads us to the
conclusion that the third-order derivative is negligible with
respect to the second-order one if


 �
g

�V
. �34�

The dissipative character of the system thus increases the
region of validity of the truncated Wigner approximation.
The dissipation gives away information about the system and
destroys nontrivial quantum states �e.g., number or
Schrödinger cat states�. In terms of the Wigner function, os-
cillations of PW accompanied by regions where it becomes
negative �that cannot be represented by a regular probability
distribution� are washed out by the dissipation.38 Nontrivial
quantum states are actually not expected to be relevant in
polariton condensation but rather thermal and coherent
states. These have a well-behaved Wigner quasiprobability
distribution that can in principle be sampled by a Langevin
equation. Considering the case of a stable gas �Rin=Rout=

=0� reveals however that a thermal/coherent state is not al-
ways well described by the truncated Wigner approximation.
When there is no dissipation, the second-order derivative in
Eq. �28� is absent and neglecting the third-order derivative in
Eq. �28� can only be justified with respect to the first-order
one. The approximation then only holds in the regime when
each grid cell is occupied by a large number of particles.26

Under this condition, spontaneous scattering �a quantum ef-

fect not easy to describe correctly within classical field
theory� is dominated by stimulated scattering. In momentum
space, such a model is truncated at a momentum where the
difference between the classical �Rayleigh-Jeans� and quan-
tum �Bose-Einstein� momentum distributions is small. In the
presence of dissipation on the other hand, spontaneous scat-
tering from the reservoir into the classical field is described
by the second-order derivatives and turns out to be taken
correctly into account by the Langevin Eq. �32�, and it be-
comes possible to obtain a reliable description of all the
modes that have an appreciable occupation. We will revisit
this issue when we relate our formalism to the Boltzmann
equation in Sec. VI.

V. EXCITON RESERVOIR

In our description of the microcavity dynamics, the exci-
tonlike particles are treated as a classical reservoir. This ap-
proximation allowed to trace out the excitonic degrees of
freedom and to isolate the quantum dynamics of the polari-
tons from the classical exciton dynamics. In principle, the
reservoir density appears as a deterministic classical quantity
in the resulting equations of motion for the lower polariton
dynamics. Physically, however, this is not expected to be a
very good approximation because the condensate serves as a
relaxation mechanism for the excitons. Stimulated scattering
makes the rate of this relaxation to depend on the condensate
population. We propose to go beyond the approximation that
the reservoir is unaltered by the system by coupling its dy-
namics to the equation of motion for the classical polariton
field

dnR

dt
= − 
R�nR − nR

o�Ip,��� . �35�

Similar ideas have been implemented in Ref. 22, where
the dynamics of a single condensate mode was coupled to a
Boltzmann equation for the excited states, and in Ref. 5,
where the reservoir was modeled by a saturable gain me-
dium, a model widely used in laser physics.39

In Eq. �35�, nR
o�Ip ,�� is the average steady-state value of

the reservoir density in the presence of a pump with intensity
Ip and a lower polariton field �. The relaxation time 
R

−1 is a
measure of the time it takes for the reservoir density to adjust
to a new environment �Ip ,��. Spatial diffusion of the reser-
voir excitons is expected to be a small effect25 and was there-
fore neglected. For the steady-state value of the reservoir
density, we assume that it is simply proportional to the bal-
ance of incoming and outgoing particles,

nR
o�P,�� = �
Ip −

d

dt

�†���res� , �36�

where d
dt 
�

†�� �res=2 Re����Rin−Rout��� is the net scattering
rate from the reservoir into the lower polariton branch. It is
instructive to substitute Eq. �36� into Eq. �35�:

dnR

dt
= P − 
RnR − �
R

d

dt

�†���res, �37�

where P=�Ip is the effective pump term for the active res-
ervoir polaritons. The parameter � quantifies the backaction

STOCHASTIC CLASSICAL FIELD MODEL FOR… PHYSICAL REVIEW B 79, 165302 �2009�

165302-5



of the condensate on the reservoir. This backaction is needed
to obtain a steady state for the dynamical equations above
the threshold, where for nR= P /
R the inscattering rate ex-
ceeds the outscattering rate. In mean-field theory, the reser-
voir density nR is clamped to its threshold value nR,mf that
satisfies for homogeneous systems nR,mf

2 Rin�0�−nR,mfRout�0�
=
. If we rewrite the motion equations for nR in terms of the
renormalized ñR=nR /nR,mf, we have

dñR

dt
= P̃ − 
RñR − �

d

dt

�†���res, �38�

where �=�
R /nR,mf. Also in the presence of fluctuations, the
dimensionless reservoir density ñR is close to one above
threshold, in order for the gain to compensate for the losses.
The factor � plays an important physical role because the
backaction of the condensate on the reservoir tends to damp
the condensate fluctuations. If the condensate density is at
some time larger than average, the reservoir will be depleted;
Rin−Rout decreases and the deterministic part in the equations
of motion for the condensate will decrease the amplitude of
the fluctuation. In principle, the parameter � could be calcu-
lated from the Boltzmann equation. We prefer however to
study the physics in terms of this parameter because it gives
a good insight in the nonequilibrium aspects of the coher-
ence.

In the truncated Wigner approximation, the density of po-
laritons is related to � as n= ���2−1 / �2�V�, or in words, the
classical field � contains half a particle per mode of zero-
point fluctuations. These fluctuations should be taken into
account when evaluating the last term in Eq. �38�. For the
outscattering, the zero-point fluctuations do not contribute
and should be subtracted, whereas for the inscattering, the
zero-point fluctuations give rise to only half of the spontane-
ous inscattering. The remaining part should be added. The
equation of motion for the reduced reservoir density then
finally reads as

dñR

dt
= P̃ − 
RñR − �

d

dt

�†���res,W

−
�

2�V
�
k

�Rin��LP�k�� + Rout��LP�k��� . �39�

VI. RELATION WITH THE BOLTZMANN EQUATION

In the dissipative case, the derivation of the truncated
Wigner equation did not rely on the formation of a conden-
sate. We can therefore describe within the same formalism
the condensed and noncondensed polariton gases. In the case
that coherence is negligible, it is instructive to simplify the
stochastic equations of motion Eq. �32�. We will find that in
the incoherent regime, the polariton condensate can be de-
scribed with a Boltzmann-type equation.40

For simplicity, we consider the case of a uniform reservoir
density. By writing the stochastic motion equations for the
field ��k� in momentum space, treating the interactions in
the second Born approximation and assuming that there are
no phase relations between the different momentum compo-

nents 
���k , t���k� , t��= �N�k , t�+1 /2��k,k�, one obtains the
following Boltzmann-type equation for the time evolution of
the densities in momentum space,

dN�k,t�
dt

= Rin��LP�k���N�k,t� + 1� − �Rout��LP�k�� + 
�N�k,t�

+ IB�N�k,t�� + IC�N�k,t�� . �40�

The first two terms describe the evolution of the mode occu-
pation due to the interaction with the reservoir and losses
through the cavity mirrors. Collisions are described by the
last two terms. IB is the usual Boltzmann collision integral,

IB�N1� = − 2
g2 �
k1,k2

�
−R��1 + �2 − �3 − �4�

��N1N2�1 + N3��1 + N4� − N3N4�1 + N1��1 + N2�� ,

�41�

where N1�t�=N�k , t� ,N2�t�=N�k1+k2−k , t� ,N3�t�=N�k1 , t� ,
N4�t�=N�k2 , t� and analogous for the energies �i. The � func-
tion for energy conservation is broadened due to the finite
lifetime of the polaritons to a Lorentzian with width �
-Rin
+Rout�.

The extra collisional term is due to the fact that our sto-
chastic classical field model does not coincide with the true
quantum dynamics �the third-order derivatives in Eq. �28�
are neglected�:

IC�N1� = −

g2

2 �
k1,k2

�
−R��1 + �2 − �3 − �4�

��N1 + N2 − N3 − N4� . �42�

This term is spurious because the Boltzmann equation should
be recovered in the incoherent limit. Our classical field
model can therefore only be a good approximation of the full
quantum dynamics if the term IC is negligible with respect to
the other terms in Eq. �40�. It scales as IC� �g /�V��gn�V�. If
the occupation numbers per grid cell n�V are much larger
than unity, the Boltzmann collision term IB is obviously
dominant with respect to IC. This is the typical condition for
the use of the Wigner distribution function in the description
of a stable Bose gas.26 For bosons with a finite lifetime, this
condition can be relaxed because even when n�V is not
much larger than unity, the spurious term can be still much
smaller than the reservoir term Rin. The inscattering rate Rin
should compensate the losses 
. If occupation numbers are
not large, the truncated Wigner is therefore still expected to
yield physical results if g /�V�
. Note that the latter re-
quirement coincides with condition �34� derived from the
full equation of motion Eq. �28�.

If we neglect the collisional terms in Eq. �40�, the steady-
state solution is

N�k� =
1

�
 + Rout��k��/Rin��k� − 1
. �43�

The simplest model that yields a temperature TR �that is in
experiments typically higher than the lattice temperature� for
the tail of the polariton momentum distribution is obtained
by setting the outscattering rate to zero,
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Rout�ñR,E� = 0, �44�

Rin�ñR,E� = 
ñR
2 exp�− E/TR� . �45�

The inscattering rate is fixed by the definition that threshold
is reached at ñR=1. Studies of the Boltzmann equation41

have however shown that the rates Rin and Rout both tend to
increase as a function of the energy, approximately as

Rin�ñR,E� = �1 + ��
 exp�E/kBTR� , �46�

Rout�ñR,E� = �
 exp�2E/kBTR� , �47�

where � is a dimensionless parameter that quantifies the out-
scattering. We will see below that a nonzero outscattering
enhances fluctuations.

VII. NUMERICAL RESULTS

The stochastic motion equations can be simulated by
Monte Carlo techniques. As we have already mentioned in
Sec. I, the nonequilibrium condition of the polariton conden-
sates makes that the effect of the reservoir on the correlation
functions cannot be characterized by the temperature alone.
We will discuss below two other physical quantities that de-
termine the degree of coherence in the polariton condensate:
the feedback parameter � and the outscattering rate Rout. The
other parameters we keep fixed for all simulations are the
following: 
=0.5 meV, mLP /�=1 �m−2 meV−1, g /�
=0.03 �m2, and kBTR=2 meV. The simulations were done
on a 32�32 point grid with physical dimension of
66�66 �m2 and periodic boundary conditions. The deter-
ministic evolution of the polariton field �Eq. �29�� was cal-
culated with a split-step method, evaluating the kinetic en-
ergy in momentum space and the other terms in real space
and transforming back and forth using fast Fourier transform
�FFT� algorithms. The stochastic fields with the spatial cor-
relation functions given by Eq. �33� were constructed from
unit variance uncorrelated complex Gaussian noise fields
��x� by the linear transformation dW=D�, where we used a
vector notation for the noise fields and D is the matrix square
root of the noise correlation D=�
dWdW†�. The calculation
of this square root is an important addition to the numerical
complexity in computing the time evolution of the lower
polariton field.

Figures 2 and 3 illustrate single Monte Carlo realizations
of the classical field ��x�. Even though these images have
strictly speaking no direct physical meaning, they already
illustrate qualitatively the coherence properties of the polar-
iton condensate. Figure 2 shows two examples for a finite
excitation spot for pump intensities below �panels a and b�
and above the threshold �panels c and d�. At low density,
both the density and phase fluctuations are large, whereas the
phase fluctuations are clearly suppressed in the high-density
regime. Panel �d� shows that phase coherence exists all over
the extent of the excitation region. The concentric phase pro-
file originates from the repulsive polariton-polariton interac-
tion that causes an outward flow of polaritons.10

Figure 3 shows snapshots of the polariton density and
phase for a uniform pump below and slightly above the

threshold. The phase profile of panel �d� shows that the phase
ordering is only partial. Vortex-antivortex pairs appear to ex-
ist at densities well above the stimulation threshold. This is
an indication that the physics of the Berezinskii-Kosterlitz-
Thouless type7,13 could occur in polariton condensates.

Three momentum distributions for increasing pump inten-
sity are shown in Fig. 4. As expected, our model shows the
buildup of a large occupation of the low-momentum states
for increasing pump intensity. The momentum distributions
appear to be rather well fitted by a Bose-Einstein function
�full line�. It is important to mention here the important role
of the reservoir relaxation rates. We have chosen them in
such a way that a thermal distribution is obtained even in the
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FIG. 2. Snapshots of a single Monte Carlo realization of ��a� and
�c�� the density and ��b� and �d�� phase for excitation parameters
��a� and �b�� below and ��c� and �d�� above threshold in the case of
a finite excitation spot.
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absence of collisions between lower polaritons. In simula-
tions with energy-independent relaxation rates �not shown�
and a large yet realistic42 polariton-polariton interaction
strength, we have obtained a constant instead of exponential
decay at large momenta.

Note that the temperature extracted from the fits of the
tails to a Maxwellian is lower than the reservoir temperature
TR �2 meV for the present simulations� that enters the rates
Rin,out according to Eq. �47�: the nonlinearity modifies the
temperature that is expected in the linear regime. We remind
the reader that TR does not coincide with the lattice tempera-
ture and that Tfit�TR does not imply that the polariton tem-
perature is lower than the lattice temperature.

The subtle features of long-range coherence are much
clearer in the Fourier transform of the momentum distribu-
tion, i.e., the first-order spatial coherence function. In Fig. 5
two values of � are compared. Below the condensation
threshold, the gain saturation parameter � �see Eq. �39�� has
no influence and the fit of the coherence by the g�1� of the
noninteracting Bose gas yields the reservoir temperature of 2
meV. For the simulation above the threshold, a higher value
of � improves the long-range coherence. Both spatial coher-
ence functions are relatively well fitted by one of a noninter-
acting Bose gas. Both temperatures are below the reservoir
temperature. The lowest effective temperature is obtained for
the largest feedback parameter �.

In the simulations of Fig. 5, the outscattering was set to
zero. In the simulations presented in Fig. 6, we have included
this effect. In order to avoid exceedingly large rates in the
model, we have put a cutoff in the magnitude of Rout as

Rout�E�=min�2
e2E/TR ,3.3 meV�. The inscattering rate was
chosen Rin�E�= �Rout�E�+
�e−E/TR.

Figure 6 shows that the outscattering has a big effect on
the coherence function. This should not come as a surprise
because the outscattering increases the fluctuations �physi-
cally shot noise due to the discrete nature of the polariton
field�. Keeping �=0.01 �m−1 as in Fig. 5 but including
some outscattering, the coherence in panel �a� is dramatically
decreased. As compared to the simulations of Fig. 5, the
effect of � is much more pronounced. For the smallest value
of �, the temperature of 5.5 meV for which the spatial co-
herence is reasonably well fitted is much larger than the one
that is extracted from the tail of the momentum distribution
�less than 1 meV�: the polariton condensate behaves in this
regime very different from the ideal Bose gas.

Another quantity of great physical interest is the second-
order coherence function g�2��x , t ;x� , t��
= 
�†�x , t��†�x� , t����x� , t����x , t�� that quantifies the density
fluctuations. Experimentally, the equal position second-order
coherence was investigated in Ref. 17 for equal times t= t�
and in Ref. 5 as a function of the delay t− t�. Within the
Wigner formalism, different time correlation functions are
not straightforwardly calculable, so we present here only re-
sults for the equal time second-order coherence.

Results of the equal position second-order coherence
g�2��0��g�2��x , t ;x , t� are shown in Fig. 7 for several param-
eter values. As expected, g�2��0� approaches the value 2 of
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tions are within the symbol size.
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the incoherent Bose gas in the low-density regime. For in-
creasing polariton densities, the second-order coherence de-
creases, but its actual value depends again strongly on the
chosen parameter values. A larger value of the feedback pa-
rameter �, suppresses the density fluctuations. This is in
agreement with the model described in Ref. 5, where the
density fluctuations are proportional to the saturation density
�large saturation density means small feedback from the con-
densate on the reservoir�. Figure 7 also shows that the out-
scattering increases the density fluctuations. This dependence
is expected because adding the knock out processes leaves
the deterministic term in the evolution equation for the clas-
sical field unaltered but increases the fluctuations.

Note that the density fluctuations are within our model,
not always monotonous, but for some parameter values show
a minimum value slightly above threshold. Nonmonotonous
behavior of g�2��0� was also observed in experiments on po-
lariton condensation in CdTe microcavities.17 Also in the the-
oretical work of Refs. 43 and 44 based on a Boltzmann equa-
tion for the excited states coupled to a master equation for
the condensate mode, an increase in density fluctuations
above the threshold was found. It is however important to
mention that in Fig. 7 the interaction energy is very large
when g�2��0� increases again �1 meV blueshift due to
condensate-condensate interactions alone�. When the value
of the blueshift is reduced to 0.2 meV, g�2��0� is found to be
very close to one.

We want to point out that we have not found any regime
with good long-range spatial coherence and large density

fluctuations. Indeed, Fig. 6�a� shows that at the density n
�20 �m−2 the spatial coherence is, although longer than the
thermal de Broglie wavelength corresponding to TR, limited
to about 10 �m. Physically it is actually not expected that
good spatial coherence and strong density fluctuations can go
together because phase fluctuations are coupled to the den-
sity fluctuations through the interaction and kinetic energy.
So far, in the experiments on CdTe microcavities where the
increase in g�2��0� as a function of pump power was ob-
served, no decrease in spatial coherence was seen. It is pos-
sible that the distance at which the spatial coherence was
probed is too short for the decrease in spatial coherence to be
detectable, but we cannot exclude other explanations in
terms of extrinsic experimental effects. The measured den-
sity fluctuations could, for example, contain a component
due to intensity fluctuations in the excitation laser.

VIII. CONCLUSIONS

We have derived classical field equations for a nonreso-
nantly excited polariton condensate in a semiconductor mi-
crocavity within the truncated Wigner approximation.
Thanks to the polariton losses our model remains physical in
the low-density regime and allows us to describe the polar-
iton condensate at all densities. Our equations were shown to
reduce to the Boltzmann equation in the low-density regime
below threshold. Above threshold, the equations were ana-
lyzed numerically with Monte Carlo simulations. The first-
and second-order spatial coherences were shown to depend
dramatically on the feedback from the condensate on the
reservoir �the gain saturation� and on the collisions with res-
ervoir excitons that knock polaritons out of the condensate.
Within our model, the density fluctuations can show nonmo-
notonous behavior as a function of the polariton density. We
predict that an increase in density fluctuations is accompa-
nied by a decrease in the spatial coherence.

Finally, the vortex defects in individual Monte Carlo re-
alizations of the polariton field show that the spatial coher-
ence is limited by the spontaneous appearance of vortex de-
fects in the phase. A further study of the role of vortices is
necessary to understand their effect on the spatial coherence.
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